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Growth of Larger Hydrocarbons in the Ionosphere of Titan

Claire L. Ricketts,[a] Detlef Schrçder,*[a] Christian Alcaraz,[b] and Jana Roithov1*[a, c]

Among the many fascinating results of the Cassini–Huy-
gens mission, the mass spectrum of the ionosphere of Titan
has attracted considerable attention.[1] In brief, the iono-
sphere was found to be surprisingly complex, consisting of
hydrocarbon ions CmHn

+ as well as nitrogen-containing ions
CnHnNo

+ with mass-to-charge ratios up to the probe#s limit
of m/z 100;[2] even much heavier components have been
proposed.[1b,3] While the formation of CmHn compounds with
m � 7 is reasonably well understood,[3–5] routes to larger hy-
drocarbons are less obvious. Moreover, most of the present
models rely on condensation reactions of CmHn

+ ions with
unsaturated precursors such as acetylene,[6] whereas meth-
ane, as the major hydrocarbon in the atmosphere of Titan,
only plays a minor role in the subsequent growth processes.
Here, we report carbon�carbon (C�C) coupling reactions of
methane with medium-sized CmHn

2+ dications leading to
larger hydrocarbon molecules. Despite low steady-state con-
centrations of the dicationic intermediates, kinetic modeling
allows predictions about the larger hydrocarbon species
present in the ionosphere of Titan, thereby rationalizing the
results from the Cassini–Huygens mission which consider-
ation of monocations only cannot explain.
The activation of methane poses a particular challenge

and usually involves energetic conditions or metal cataly-
sis.[7] Under the conditions of the Titan atmosphere (low
temperatures and pressures), small hydrocarbon ions can

indeed react with methane, but the rate constants decrease
with size, and so far reaction 1 involves the largest CmHn

+

ion reacting with methane under thermal conditions.[8,9]

C6H5
þþCH4 ! C7H7

þþH2 ð1Þ

CmHn
2þþCH4 ! Cmþ1Hnþ2

2þþH2 ð2Þ

Recently, we proposed double ionization as a feasible
route for C�C bond formation under extreme conditions.[10]

In our laboratory experiments (see Supporting Information),
CmHn

+ mono- and CmHn
2+ dications (m=7–11, n=6–12)

were generated by electron ionization (EI) of aromatic pre-
cursors, mass-selected, and allowed to interact with meth-
ane.[11] Whereas most CmHn

+ monocations studied do not
show a significant reactivity with methane under these con-
ditions, many CmHn

2+ dications undergo dehydrogenative
C�C coupling according to reaction (2); we note in passing
that none of these CmHn

2+ dications reacts with nitrogen as
the major component in the atmosphere of Titan.
As an example (Figure 1), we refer to the reaction of

methane with the C7H6
2+ dication generated upon EI of tol-

uene.[13] The observed reactions (3)–(7) can be classified as
follows.

proton transfer ðPTÞ C7H6
2þþCH4 ! C7H5

þþCH5
þ ð3Þ

electron transfer ðETÞ C7H6
2þþCH4 ! C7H6

þþCH4
þ ð4Þ

hydride transfer ðHTÞ C7H6
2þþCH4 ! C7H7

þþCH3
þ ð5Þ

C�C coupling ðCC,H2Þ C7H6
2þþCH4 ! C8H8

2þþH2 ð6Þ

C�C coupling ðCC,2H2Þ C7H6
2þþCH4 ! C8H6

2þþ2 H2 ð7Þ

ET and HT [reactions (4) and (5)] are common processes
in the bimolecular chemistry of multiply charged ions,[14, 15]

and PT [reaction (3)] is a particularity of hydrogen-contain-
ing dications.[16,17] While reactions (3)–(5), driven by the
energy gain upon formation of two singly charged product
ions, dominate the reactivity of C7H6

2+ under the experi-
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mental conditions, the bond-forming reactions (6) and (7)
associated with C�C coupling can compete to a considerable
extent.[18] In addition to the ionic products given in reactions
(3)–(7), Figure 1 shows the fragments C2H3

++C5H3
+ due to

unimolecular Coulomb explosion of the parent dication and
a weak signal for the monocationic C8H9

+ species (with no-
table deuterium incorporation when using CD4) which can
be assigned to a secondary reaction of methane with the ini-
tially formed C8H8

2+ dication via hydride transfer in analogy
to reaction (5). Further, the C�C coupling products of
C7H6

2+ and CD4 show substantial H/D equilibration and
thereby imply a significant lifetime of the dicationic collision
complex C8H6D4

2+ .[10,11]

The results obtained for a series of CmHn
2+ dications (m=

7–11, n=6–12) are summarized in Table 1 using the classifi-
cation in terms of reactions (3)–(7). The data demonstrate
that C�C coupling with methane according to reaction (2) is
a general feature of medium-sized CmHn

2+ dications. The
corresponding monocations have been studied also, but
almost all react at least 100 times slower than the dications
and coupling often is not detected at all. A notable excep-
tion is the naphthylium ion, C10H7

+ , which undergoes dehy-
drogenative C�C coupling with methane in analogy to reac-
tion (1) with krel=0.06. In the particular case of the C9Hn

2+

dications (n=6–8), we also addressed the question of possi-
ble isomers in the dication state.[13, 20] However, the ion/mol-
ecule reactions of the corresponding dications generated
upon EI of two structurally significantly different neutral
precursors, namely, indene and mesitylene, respectively,
were virtually superimposable.
Qualitatively, the data in Table 1 reveal the following

trends. i) For hydrogen-depleted CmHn
2+ dications (m>n),

HT is more pronounced, whereas PT can compete for less
unsaturated CmHn

2+ species (m � n). ii) ET is inefficient for
most dications studied and primarily occurs for those species
for which the relative rate constants krel are low. An excep-
tion is C7H7

2+ with krel=0.42 and 19% ET, which we attri-
bute to the particular stability of the tropylium monocat-
ion.[21] iii) roughly, the efficiency of C�C coupling (fCC) in-
creases with m and decreases with n which can be explained
as follows. With increasing m, the recombination energies of
the CmHn

2+ dications decrease and hence the driving forces
for charge-separation processes in analogy to reactions (3)–
(5) decrease.[17] Further, hydrogen-depleted dications
(smaller n) undergo the coupling reactions more readily due
to their larger degree of unsaturation and hence increased
tendency for condensation processes.
In a more general sense, reaction (2) provides a route for

the formation of larger hydrocarbon ions using methane as
C1 building block, provided the conditions enable the forma-
tion of molecular dications.[22–25] Like the CO2

2+ dications in
the atmosphere of Mars,[26] vacuum-ultraviolett (VUV) pho-
tons as well as energetic particles in the upper atmosphere
of Titan may enable the ionization of mono- to dications.[5,27]

As the corresponding monocations react with methane
much less efficiently, the dications thus provide a mecha-
nism for the growth of larger hydrocarbons.

Figure 1. Ion/molecule reaction of mass-selected C7H6
2+ generated by EI

of toluene with neutral methane (lower trace) and [D4]methane (upper
trace). The vertical axis refers to an intensity of 1 for the parent ion
(shifted upwards by 0.5 for the reaction with CD4), the mass-region from
m/z 10–40 is amplified by a factor of 50, and the mass-region from m/z
50–120 is amplified by a factor of 10; the application of different factors
in low- and high-mass regions is due to the discrimination of light frag-
ment ions in detection.[11, 12] Two expanded insets show the isotope pat-
terns of the dicationic C�C coupling products in the mass range m/z 50–
56. The monocations C2H3

+ and C5H3
+ due to unimolecular dissociation

of metastable C7H6
2+ are denoted with an asterix.

Table 1. Relative rate constants[a] and branching ratios[b] in the reactions
of CmHn

2+ dications with neutral methane.

Precursor Selected
ion

krel
[a] PT ET HT CC,H2/

CC,2H2

fCC
[c]

toluene C7H6
2+ 0.61 5 <1 74 10:11 0.13

C7H7
2+ 0.42 3 19 64 8:6 0.06

C7H8
2+ 0.46 52 1 41 2:4 0.03

p-xylene C8H6
2+ 0.02[d] 2 14 14 62:8 0.01[d]

C8H7
2+ 0.13 54 <1 7 11:28 0.05

C8H8
2+ 0.17 1 <1 44 46:9 0.09

C8H9
2+ 0.42 19 <1 40 35:6 0.17

C8H10
2+ 0.05[d] 44 <1 11 30:15 0.02[d]

mesitylene C9H6
2+ [e] 1.00 3 <1 14 83:<1 0.83

C9H7
2+ [e] 0.05 7 20 10 57:6 0.03

C9H8
2+ [e] 0.12 82 <1 1 4:13 0.02

C9H9
2+ 0.11 79 6 1 5:8 0.01

C9H10
2+ 0.10 91 2 <1 3:4 0.01

C9H12
2+ 0.15 87 4 2 4:3 0.01

naphthalene C10H6
2+ 0.05[d] <1 8 2 84:6 0.05[d]

C10H7
2+ 0.95 11 2 15 68:4 0.68

C10H8
2+ 0.04 4 60 8 22:6 0.01

1-methyl-
naphthalene

C11H6
2+ 0.62 1 <1 8 90:<1 0.56

C11H7
2+ 0.22 7 6 8 65:14 0.17

C11H8
2+ 0.60 26 2 6 56:10 0.40

C11H9
2+ 0.12 20 12 5 53:10 0.08

C11H10
2+ 0.20 84 <1 <1 1:15 0.03

[a] Formal rate constants derived from the amount of dication conversion
in the presence of methane under single-collision conditions (ca.
10�4 mbar) relative to the fastest reaction of C9H6

2+ .[18,19] [b] Normalized
to S=100. [c] Relative efficiency of the C�C coupling expressed as the
product of krel and the branching ratios of the coupling reactions.
[d] Lower limit due to overlapping monocations in the parent-ion beam.
[e] Within experimental error, identical results were obtained for the di-
cation generated by EI of indene.
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With respect to the relevance of these C�C coupling reac-
tions in interstellar environments or the higher regions of
methane-rich atmospheres of planets or moons, an impor-
tant aspect concerns the internal energy of the CmHn

2+ di-
cations serving as reactants, because it might be argued that
excess energy imparted in the ionization event and/or elec-
tronically excited states of CmHn

2+ are responsible for the
C�C coupling. For singly charged ions, the usual strategy to
cope with this question is the proper thermalization of the
reactant ions.[28] For dications, however, this approach is
more difficult to realize due to the large ionization energies
required and the intrinsically high reactivity of CmHn

2+

ions.[10,11, 13] Therefore, we pursued a different approach em-
ploying photoionization using synchrotron radiation in con-
junction with reactive monitoring.[29] To this end, neutral tol-
uene is admitted to the ion source of a multipole mass spec-
trometer,[30] ionized by VUV photons, the ion of interest,
here C7H6

2+ (see Figure 1), is mass-selected and transferred
to an octopole collision cell in which it is allowed to react
with methane under single-collision conditions (nominal col-
lision energy 0.8 eV), and the dicationic C�C coupling prod-
uct C8H8

2+ formed according to reaction 6 is then monitored
using a second mass filter. While all conditions are other-
wise kept constant, the photon energy is scanned from
below the threshold of the reactant ion to a few eV higher.
The data shown in Figure 2 reveal two important aspects.

At first, the apparent threshold of the coupling product
C8H8

2+ somewhat below 26 eV is identical to that of the pre-
cursor C7H6

2+ within experimental error; i.e., from the very
threshold, the traces overlap with each other and the rela-
tive yield is independent of the energy of the ionizing pho-
tons up to about 1 eV above threshold. Secondly, the rela-
tive yield of coupling product C8H8

2+ tends to decrease at
about 27 eV which is ascribed to contributions from rovibra-
tionally and/or electronically excited C7H6

2+ dication precur-
sors. The synchrotron measurements thus proof directly that
the observed C�C coupling reactions are nascent to the
ground-state reactivity of C7H6

2+ .

In order to explore the relevance of this scenario, the re-
sults were implemented in a kinetic modeling,[19,31] whose es-
sentials are sketched in Scheme 1. The key assumption is

the existence of some event which leads to the formation of
CmHn

2+ dications (dication feed, DF), as expressed by a
phenomenological parameter kDF which is applied to all
monocationic species. The reactions of the CmHn

2+ dications
are then determined by the relative rate constants and
branching ratios (Table 1). Here, PT, ET, and HT connect
the CmHn

2+ dications with the monocations (with varying
hydrogen content), whereas the C�C coupling leads from
the Cm to the Cm+1 manifold. The newly formed Cm+1Hn+2

2+

dications can then either convert to monocations via PT, ET,
and HT or continue growing. Further, the assumption of a
dication feed implies that the same energetic conditions ena-
bling double ionization can also lead to monocation degra-
dation (MD) from the Cm+1 back to the Cm manifold, as ex-
pressed by another phenomenological parameter kMD which
also is applied to all monocations larger than C7. The model
fulfils the boundary conditions that i) a quasi-stationary
state is rapidly reached for all ions and ii) the results are not
very sensitive of the starting conditions. We begin the mod-
eling with C7Hn

2+ dications, because toluene is the smallest
aromatic hydrocarbon, whose second ionization energy
(14.8 eV)[32] is clearly below the first ionization energy of ni-
trogen (15.58 eV) which is the predominant component in
the atmosphere of Titan.
Figure 3 shows a result of such a modeling.[33] While the

abundances of the higher CmHn
+ species, of course, crucially

depend on the choice of kDF and kMD, several aspects of this
model are worth considering with respect to Titan. i) The
sum of all dications is far below 1%, consistent with general
expectation for such energetic species and the lack of indica-
tions for the presence of doubly charged ions from the Titan
missions.[34] ii) Despite low steady-state concentrations of
the dications, C�C coupling leads to notable amounts of
higher CmHn

+ species (n � 8), whereas this fraction is much
lower and less extended if dications are excluded (inset in
Figure 3). iii) Compared with the conventional EI mass spec-
tra of aromatic hydrocarbons (which are dominated by [M]+

Figure 2. Abundances of the precursor dication C7H6
2+ (^) and the C�C

coupling product C8H8
2+ (~) in single-ion monitoring as a function of

the energy of the ionizing photons (in eV). The inset shows the relative
yield of the coupling product, that is, I ACHTUNGTRENNUNG(C8H8

2+)/[I ACHTUNGTRENNUNG(C7H6
2+)+I ACHTUNGTRENNUNG(C8H8

2+)], as
a function of photon energy. The encircled region a) of the inset shows
random noise as these values are below threshold, the line in region b)
indicates a plateau-behavior in the relative yield of the coupling product,
and in the arrow in region c) indicates the decrease of conversion due to
contributions of “hot” C7H6

2+ .

Scheme 1. Simplified kinetic Scheme for the growth of CmHn
+ monocat-

ions in the presence of methane via transient CmHn
2+ dications. For the

sake of simplicity, only a partial manifold of C7- and C8-ions is shown,
(CC,2H2) is left out, the neutral reactant methane and the other neutral
or ionic products are omitted. PT: proton transfer, ET: electron transfer,
HT: hydride transfer, CC: C�C coupling, DF: dication feed, MD: mono-
cation degradation.
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and [M�H]+ ions), both, single and double dehydrogena-
tion in the coupling reactions and the competition of PT and
HT lead to a broadening of the modeled monocation mass
spectra with respect to hydrogen content, which is consistent
with the Cassini–Huygens data. iv) Inherent to the construc-
tion of the kinetic modeling, specifically due to the counter-
acting parameters kDF and kMD, the modeled abundances of
the higher CmHn

+ species decrease roughly monotonically
with m, which agrees with the recent analysis of energy/
charge measurements on Titan.[1b,3] Our suggested mecha-
nism for the growth of hydrocarbon ions can hence account
for some key characteristics of Titan#s ionosphere. In future
laboratory-based studies, it will be of prime importance to
probe the relevance of this and similar scenarios for the
growth of hydrocarbons ions[4,5,35, 36] by leaving the single-
collision regime towards more realistic pressures, consider-
ation of temperature effects, and particularly also extension
to nitrogen-containing ions.[37]
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